金属によってイオンへのなりやすさが異なります。これをイオン化傾向といいます。高校化学を学ぶとき、イオン化傾向は必ず覚えなければいけない内容です。

イオン化傾向を理解すれば、金属の反応性がわかります。つまり水や熱水、酸と反応するかどうかを把握できるのです。

また、イオン化傾向は電池や金属メッキなど多くの分野で応用されています。金属によってイオンへのなりやすさが異なるため、電池を利用することによって電気を得ることができます。また、金属の腐食を防げます。

それでは、金属のイオン化傾向はどのような内容になっているのでしょうか。ここでは、酸化還元反応で重要な金属のイオン化傾向の内容を解説していきます。

イオンへのなりやすさは金属によって異なる

金属はイオンになることができます。例えばナトリウムは金属元素であり、塩化ナトリウム(NaCl)にはナトリウムが含まれています。また、鉄分は栄養素の一つとして広く知られています。つまり、金属元素由来のイオンは私たちにとって欠かせない栄養素です。

金属元素は陽イオンになることができます。つまり保有している電子を放出し、希ガス元素と同じ電子配置になります。これにより、イオンとして水中で安定して存在できます。

なお、イオン化エネルギーとイオン化傾向はまったく別の定義です。両者は似ているものの、イオン化エネルギーは陽イオンになるためのエネルギーを指します。一方、イオン化傾向はイオンへのなりやすさを表します。

語呂を利用するイオン化傾向の覚え方と並び順

それでは、イオン化傾向ではどのような並び順になっているのでしょうか。イオン化傾向を学ぶとき、重要な金属元素の並び順を必ず覚えるようにしましょう。

金属の並び順を覚えていない場合、問題を解くことは確実にできません。要は、イオン化傾向の問題を解くとき、金属の並び順を覚えているのはスタート地点といえます。

このとき、語呂を利用して覚えましょう。高校化学では語呂を利用して覚えなければいけないケースが2つあります。一つが元素周期表であり、もう一つがイオン化傾向です。イオン化傾向では以下の語呂を使います。

  • リッチに貸そうかな、まああてにすんなひどすぎる借金

リチウム(Li)はイオンになりやすい一方、金(Au)はイオンになりにくいです。金属によって、イオンへのなりやすさに違いがあることを理解しましょう。

なおイオン化傾向に水素(H2)が加わっています。水素は金属元素ではありません。ただ水素は電池の仕組みを学ぶときや金属イオンの発生で非常に重要であるため、水素の位置を含めてイオン化傾向を覚える必要があります。

金属によって異なる反応の種類と反応性

金属によってイオン化傾向が異なると、他の物質と反応するときにどのような違いを生じるのでしょうか。イオンになりやすいというのは、その分だけ反応性が高いことを意味しています。言い換えると、イオン化傾向の高い金属は金属単体で存在しません。

例えば私たちにとって塩化ナトリウム(食塩)は身近な存在です。毎日、塩化ナトリウムを利用した食事を私たちは食べており、私たちの体内には多くのナトリウムイオンが存在します。しかし、ナトリウム金属が単体で存在している状態を見たことのある人は少ないです。

この理由としてナトリウムはイオン化傾向が強く、金属ナトリウムの塊を水に落とすと爆発します。つまり、空気中では金属ナトリウムの状態で存在することができないのです。

一方、銀やプラチナ、金は貴金属として知られています。なぜこれらの金属で希少価値が高いかというと、数が少ないだけでなく、イオン化傾向が低いからです。指輪やネックレスとして加工するとき、イオン化傾向が低いためサビることがなく、常に金属光沢を発するのが貴金属です。

このとき、金属元素ごとにイオン化傾向の反応性をまとめると以下のようになります。

イオン化傾向の問題に答えるとき、この表は非常に重要です。金属イオンになりやすい順番だけでなく、空気(酸素)や水、酸との反応性を覚えなければ問題を解くことはできません。

それでは、具体的な内容を確認していきましょう。

空気(酸素)と金属との反応

前述の通り、イオン化傾向の強い金属元素は反応性が高いです。そのため、空気(酸素)と反応することによって酸化します。リチウム(Li)からナトリウム(Na)までの金属は酸素の影響によって内部まで酸化されます。

一方、酸化されるものの表面に被膜を作るため、内部までは酸化されない金属元素があります。マグネシウム(Mg)から銅(Cu)までは、酸素によって表面まで酸化されます。

それに対して、水銀(Hg)から金(Au)は空気中の酸素と反応することがありません。

常温の水や熱水に対する金属との反応

イオン化傾向では水との反応性も重要です。ナトリウムが冷水と反応して爆発するのは、イオン化傾向が強いからです。このときリチウム(Li)からナトリウム(Na)は水と激しく反応し、水素(H2)を発生させます。

  • 2Na + 2H2O → 2NaOH + H2

またマグネシウム(Mg)については、冷水とは反応しないものの、熱水と反応を起こします。

  • Mg + 2H2O → Mg(OH)2 + H2

リチウム(Li)からマグネシウム(Mg)は水と反応し、水素分子だけでなく、水酸化物も生成します。

それに対して、マグネシウム(Mg)よりもイオン化傾向が低いアルミニウム(Al)、亜鉛(Zn)、鉄(Fe)については、高温の水蒸気と反応することによって水素が発生します。

  • 3Fe + 4H2O → Fe3O4 + 4H2

アルミニウム(Al)、亜鉛(Zn)、鉄(Fe)を利用する場合、生成するのは水素と酸化物であり、水酸化物は生成しません。

酸性水溶液と金属との反応

イオン化傾向で特に重要なのが酸性水溶液との反応です。金属の腐食や電池の仕組みを理解するとき、酸性水溶液との反応性を覚える必要があります。

塩酸や希硫酸などの酸性水溶液には多くのH+が存在します。イオン化傾向というのは、前述の通りイオンのなりやすさを示しています。そのためイオン化傾向の表の中でも、H2よりもイオン化傾向が強い金属の場合、酸性水溶液の中に金属を入れるとH2が発生します。

H2よりもイオン化傾向が強いというのは、水中にH+が存在するよりも、金属がイオンとして存在するほうが安定することを意味しています。そのため例えばマグネシウム(Mg)を塩酸や希硫酸の溶液に入れると、Mgがイオンとなり、その代わりとして気体としてH2が生成されます。

  • Mg + 2HCl → MgCl2 + H2

水素よりもイオン化傾向が強いかどうかで反応性を判断しましょう。

なお例外として鉛(Pb)があります。鉛は水素よりもイオン化傾向が強いため、イオンになります。ただ塩酸との反応で生成する塩化鉛(PbCl2)や、硫酸との反応で生成する硫酸鉛(PbSO4)は水に溶けません。そのため、塩化鉛や硫酸鉛によって鉛の表面が覆われ、塩酸や希硫酸とは反応しなくなります。

そのため鉛は水素よりもイオン化傾向が強いものの、反応が進行しません。より正確には、反応が進行しないのではなく、鉛を酸性溶液に入れると反応が停止します。

酸化力のある酸(熱濃硫酸・濃硝酸・希硝酸)との反応と不動態の詳細

なお、酸には種類があります。硝酸は強酸であることが知られており、同時に酸化力のある酸でもあります。また希硫酸は酸化力がないものの、熱濃硫酸については酸化力があります。

銅(Cu)や水銀(Hg)、銀(Ag)は水素よりもイオン化傾向が弱いため、塩酸や希硫酸の中に入れても反応は起こりません。しかし酸化力のある酸の中に入れる場合、水素は発生しないものの、酸化力のある酸の影響によってイオンになります。

例えば濃硝酸と反応させる場合、以下のように金属はイオンになります。

  • Cu + 4HNO3 → Cu(NO3)2 + 2H2O + 2NO2
  • Ag + 2HNO3 → AgNO3 + H2O + NO2

当然、水素よりもイオン化傾向の強い金属についても酸化力のある酸に溶けます。

・被膜の形成による反応停止:不動態の形成

ただアルミニウム(Al)、鉄(Fe)、ニッケル(Ni)については、例外的に濃硝酸に溶けません。理由としては、金属の表面に酸化物の被膜が作られるからです。これを不動態といいます。不動態により、金属の内部が守られるのです。

・金は王水に溶ける

なお白金(Pt)と金(Au)はイオンにならないものの、例外が王水の利用です。濃硝酸と濃塩酸を1:3で混ぜた液体を王水といいます。白金と金は王水に溶けることができます。

金属イオンと金属単体との反応はイオン化傾向で重要

金属のイオン化傾向は多くの場面で応用されており、その一つが電池です。電池の仕組みを学ぶとき、イオン化傾向を理解していないといけません。

例えば銅(Cu)と亜鉛(Zn)を酸性水溶液に浸し、導線でつなぐとき、以下の反応のうちどちらが起こるでしょうか。

  1. Cu + Zn2+ → Cu2+ + Zn
  2. Cu2+ + Zn → Cu + Zn2+

正解は2であり、1の反応が起こることはありません。理由としては、銅よりも亜鉛のほうがイオン化傾向が強いからです。亜鉛はイオンになりたいと考えており、銅はイオンになりたくないと考えています。そのため亜鉛は電子を放出してイオンになり、電子は銅へ流れます。

・希硫酸水溶液に銅と亜鉛を浸す

次に、希硫酸水溶液に銅と亜鉛を浸し、導線でつなぐ場面を考えましょう。この場合、以下のように亜鉛はイオンになり、電子は銅へ移動します。

銅へ移動した電子は水溶液中に存在するH+と反応し、H2が発生します。水素は亜鉛よりもイオン化傾向が弱く、イオンで存在したくないと考えています。そのため大量の水素イオンが水溶液中に存在する場合、銅へ移動した電子は水素と反応するのです。

こうして電子が移動することによって電気が発生します。これが電池の簡単な仕組みです。

金属の腐食とメッキ:トタンとブリキの違い

金属の腐食とメッキの関係を理解するときもイオン化傾向が重要です。私たちの身の回りには金属製品が多く利用されています。ただ鉄などの金属は空気や水の影響を受けることにより、徐々に酸化物や水酸化物、炭酸塩へと変化します。これをサビるといいます。サビというのは、金属が腐食することを意味します。

そこで鉄などのサビやすい金属に対して、金属の表面を覆う被膜を利用することがよくあります。これをメッキといいます。こうしたメッキとしてトタンとブリキがイオン化傾向の応用例としてひんぱんに利用されます。

・トタンを利用する場合

亜鉛(Zn)を利用し、鉄(Fe)の表面を覆った金属をトタンといいます。トタンは屋根材などで利用され、トタン屋根は屋外にあるので傷が入りやすいです。また、雨の影響を受けます。

このとき、傷の部分に雨水などの水滴があるとどうでしょうか。鉄は酸化されやすいものの、亜鉛は鉄よりもイオン化傾向が強いです。そのため鉄が酸化されるのではなく、亜鉛の酸化が優先的に起こります。

こうして鉄がイオンとして溶けだすのを防ぎ、結果として鉄の腐食を避けることができます。トタンは屋根など傷つきやすい場所で主に利用されます。

・ブリキを利用する場合

一方、スズ(Sn)を利用して鉄(Fe)の表面を覆った金属がブリキです。ブリキに傷が付くと、トタンとは逆の現象が起こります。

鉄とスズを比べると、鉄のほうがイオン化傾向は強いです。そのため水が存在すると、スズよりも鉄のほうが優先的にイオンとなり、腐食していきます。

鉄を保護できないのであれば、スズを利用する意味がないように思ってしまいます。それでは、傷がない場面ではどうでしょうか。傷がない場合、スズは鉄よりもイオン化傾向が弱いため、イオンになりません。つまり、金属が溶けだすのを防ぐことができます。

ブリキは缶詰の内側など、傷のつくリスクが非常に低い場面で利用されます。この理由として、傷がない場合は金属のイオン化を防げるからです。

イオン化傾向と金属の反応性を覚える

酸化・還元で学ぶ内容の一つが金属のイオン化傾向です。金属は多くのケースで酸化され、サビます。ただ金属によって反応性が異なります。そこで、金属のイオン化傾向を覚えましょう。

イオン化傾向を覚えていない場合、100%の確率で問題を解くことができません。そのため、金属元素ごとのイオン化傾向の順番を覚えましょう。同時に、金属元素ごとの反応性も覚えましょう。空気(酸素)や水、酸とどのように反応するのか知るのです。

これらの内容を学べば、電池の仕組みを理解できるようになります。またトタンとブリキの違いを知り、どのような役割があるのか理解できます。

多くの場面でイオン化傾向が利用されています。イオン化傾向での金属元素の順番と反応性を覚えれば、世の中の化学反応の仕組みがわかるようになります。